Spherical Skinning with
Dual-Quaternions and QTangents

lvo Zoltan Frey
Crytek R&D

~

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

Goals

#1 Improve performance by reducing the shader
constant requirements for joint transformations
30% shader constants reduction

#2 Reduce the memory foot-print of
skinned geometry

22% vertex memory reduction
29% for static geometry

y @SIGGRAPHQOH

VAN(oUVER

Skinned Geometry

ez)\
,"’3 ‘.\.\‘_:t“ s)\\ . }/a\
s = # A\
L LY R)
1 S
//// | f RN

CR‘,}EK @ SIGGRAPH2011

VAN(ouVER

Goal #1

A Improve performance by reducing the shader
constant requirements for joint transformations

A Skinned geometry requires multiple passes
A Motion Blur requires twice the transformations

A The amount of required shader constants
affects the performance of a single pass

Cl:{; @ SIGGRAPH2011

VAN(ouVER

Skinning with Quaternions

A ~30% less shader constants consumption
compared to 4x3 packed matrices

A Quaternion Linear Skinning
A Accumulated transformations dond work for positions

A Explosion of vertex instructions

A Quaternion Spherical Skinning [HEIJL04]

A Extra vertex attribute required
A Doesnd handle well more than 2 influences per vertex

A Dual-Quaternion Skinning [KCOO06] [KCZO08]

A Increase in vertex instructions

o~

C-:’\(V)FK' @ SIGGRAPH2011

VAN(oUVER

Dual-Quaternion Skinning [KSOO06] [KCZO08]

A Compared to Linear Skinning with matrices
A Accumulation of transformations is faster
A Applying the transformation is slower
A With enough influences per vertex it becomes overall faster

A The reduction of shader constants was a
win over the extra vertex instructions cost

A

y @ SIGGRAPH2011

VAN(oUVER

From Linear to Spherical

A Geometry needs to be rigged differently

A And you will still need your helper joints

A Riggers and Animators need to get used to it

A Some will love it, others will hate it
Most will keep changing their mind

A You might have to write skinning plug-ins
for third party authoring software

A Some recent authoring packages have adopted

Dual-Quaternion Skinning out of the box !» ; & ;
Q. f SIGGRAPH2011
o &40 — '@
CRYT=K &/ VAN(oUVER

Goal #2

A Reduce the memory foot-print of
skinned geometry

A We are now developing on consoles, every byte counts!

A More compact vertex format will also lead to
better performance

A Do not sacrifice quality in the process!
y @SIGGRAPFQOH

VAN(oUVER

Tangent Frames

Tangent Frames were the biggest vertex attribute
after our trivial memory optimizations

In further optimizing them we need to ensure that
A They keep begin efficiently transformed by Dual-Quaternions
A All our Normal Maps keep working as they are

C")'/ @ SIGGRAPH2011

VAN(oUVER

About Tangent Frames

A Please make them orthogonal!

A If they are not, you are introducing skewing
A You can tuse a transpose to invert the frame matrix
AYou need a full matrix inversion

A This will also prevent you from using some
compression techniques!

CR; @ SIGGRAPH2011

VAN(oUVER

Compressed Matrix Format

Vertex attributes contain two of the

frame® vectors and a reflection scalar

Tangent

BiTangent

Reflection

X

y

z

X

y

z

S

The third frame® vector is rebuild from a cross
product of the given vectors and a multiplication

with the reflection scalar

normal =

cross (tangent, biTangent) * s

&

SIGGRAPH2011
VAN(oUVER

Tangent Frames With Quaternions

Quaternion to Matrix conversion

t= transform (g, vec3 (1,0, 0))
b= transform (g, vec3 (0,1, 0))
n= transform (g, vec3 (0,0, 1))

Quaternions dond natively contain
reflection information

o

SIGGRAPH2011
VAN(ouVER

Bringing Reflection Into the Equation

Similarly to the compressed matrix
format, we can introduce reflection
with a scalar value

t= transform (g, vec3 (1,0, 0))
b= transform (g, vec3 (0, 1,0))
n= transform (q, vec3(0,0,1))*s

SIGGRAPH2011
VAN(ouVER

CYTEK &)

Tangent Frame Format Memory Comparison

Compressed Matrix

Tangent BiTangent Reflection
X y z X y z S
Quaternion
Quaternion Reflection
X y z w S

CR; @ SIGGRAPH2011

VAN(ouVER

Our Quaternion Properties

They are normalized

length (q) ==

And they are sign invariant

ey
C_,y @SIGGRAPH:ZOH

VAN(oUVER

Quaternion Compression

We can compress a Quaternion down to three elements by
making sure one of the them is greater than or equal to zero
if (q.w<D0)
a= -q

We can then rebuild the missing element with

qw= sqrt (1 T dot(g.xyz 0.xyz))

~

CR(S’)T:K @ SIGGRAPH2011

VAN(oUVER

Tangent Frame Format Memory Comparison

Compressed Matrix

Tangent BiTangent Reflection
X y z X y z S
Quaternion
Quaternion Reflection
X y z w S

Compressed Quaternior

Quaternion

Reflection

X

y

z

S

v

CR; K @ SIGGRAPH2011

VAN(oUVER

Instruction Cost

Quaternion decompression
5 mov, dp3, add, rsq, rcp

Quaternion to Tangent and BiTangent
6 add, mul, mad, mad, mad, mad

Normal and Reflection computation
3 mul, mad, mul

Total
11 for Tangent, BiTangent and Reflection
14 for full Tangent Frame

o~

Cr_-’\(>7)1=|(@ SIGGRAPH2011

VAN(oUVER

Avoiding Quaternion Compression

Isn't there a way to encode the reflection scalar
in the Quaternion, instead of compressing it?

Remember, Quaternions are sign invariant

q ==

We can arbitrarily decide whether one of its
elements has to be negative or positive!

~

C:,\‘sr}-':K @ SIGGRAPH2011

VAN(oUVER

