
Spherical Skinning with

Dual-Quaternions and QTangents

Ivo Zoltan Frey

Crytek R&D



Goals

#1 Improve performance by reducing the shader 

constant requirements for joint transformations

30% shader constants reduction

#2 Reduce the memory foot-print of

skinned geometry

22% vertex memory reduction

29% for static geometry



Skinned Geometry



Goal #1

ÁImprove performance by reducing the shader 

constant requirements for joint transformations

ÁSkinned geometry requires multiple passes

ÁMotion Blur requires twice the transformations

ÁThe amount of required shader constants

affects the performance of a single pass



Skinning with Quaternions

Á ~30% less shader constants consumption

compared to 4x3 packed matrices

Á Quaternion Linear Skinning

Á Accumulated transformations donôt work for positions

ÁExplosion of vertex instructions

Á Quaternion Spherical Skinning [HEIJL04]

Á Extra vertex attribute required

Á Doesnôt handle well more than 2 influences per vertex

Á Dual-Quaternion Skinning [KCO06] [KCZO08]

Á Increase in vertex instructions



Dual-Quaternion Skinning [KSO06] [KCZO08]

ÁCompared to Linear Skinning with matrices

ÁAccumulation of transformations is faster

ÁApplying the transformation is slower

ÁWith enough influences per vertex it becomes overall faster

ÁThe reduction of shader constants was a

win over the extra vertex instructions cost



From Linear to Spherical

Á Geometry needs to be rigged differently

Á And you will still need your helper joints

Á Riggers and Animators need to get used to it

Á Some will love it, others will hate it

Most will keep changing their mind

Á You might have to write skinning plug-ins

for third party authoring software

Á Some recent authoring packages have adopted

Dual-Quaternion Skinning out of the box



Goal #2

ÁReduce the memory foot-print of

skinned geometry

ÁWe are now developing on consoles, every byte counts!

ÁMore compact vertex format will also lead to

better performance

ÁDo not sacrifice quality in the process!



Tangent Frames

Tangent Frames were the biggest vertex attribute

after our trivial memory optimizations

In further optimizing them we need to ensure that

ÁThey keep begin efficiently transformed by Dual-Quaternions

ÁAll our Normal Maps keep working as they are



About Tangent Frames

ÁPlease make them orthogonal!

ÁIf they are not, you are introducing skewing

ÁYou can t use a transpose to invert the frame matrix

ÁYou need a full matrix inversion

ÁThis will also prevent you from using some

compression techniques!



Compressed Matrix Format

Vertex attributes contain two of the

frameôs vectors and a reflection scalar

The third frameôs vector is rebuild from a cross

product of the given vectors and a multiplication

with the reflection scalar

normal = cross (tangent, biTangent) * s

Tangent BiTangent Reflection

x y z x y z s



Tangent Frames With Quaternions

Quaternion to Matrix conversion

t = transform (q, vec3 (1, 0, 0))

b = transform (q, vec3 (0, 1, 0))

n = transform (q, vec3 (0, 0, 1))

Quaternions donôt natively contain

reflection information



Bringing Reflection Into the Equation 

Similarly to the compressed matrix

format, we can introduce reflection

with a scalar value

t = transform (q, vec3 (1, 0, 0))

b = transform (q, vec3 (0, 1, 0))

n = transform (q, vec3 (0, 0, 1)) * s



Tangent Frame Format Memory Comparison

7

5

Compressed Matrix

Tangent BiTangent Reflection

x y z x y z s

Quaternion

Quaternion Reflection

x y z w s



Our Quaternion Properties

They are normalized

length (q) == 1

And they are sign invariant

q == - q



Quaternion Compression

We can compress a Quaternion down to three elements by 

making sure one of the them is greater than or equal to zero

if (q.w < 0)

q = - q

We can then rebuild the missing element with

q.w = sqrt (1 ï dot (q.xyz , q.xyz))



Tangent Frame Format Memory Comparison

7

5

4

Compressed Matrix

Tangent BiTangent Reflection

x y z x y z s

Quaternion

Quaternion Reflection

x y z w s

Compressed Quaternion

Quaternion Reflection

x y z s



Instruction Cost

Quaternion decompression

5 mov, dp3, add, rsq, rcp

Quaternion to Tangent and BiTangent

6 add, mul, mad, mad, mad, mad

Normal and Reflection computation

3 mul, mad, mul

Total

11 for Tangent, BiTangent and Reflection

14 for full Tangent Frame



Avoiding Quaternion Compression

Isn't there a way to encode the reflection scalar

in the Quaternion, instead of compressing it?

Remember, Quaternions are sign invariant

q == - q

We can arbitrarily decide whether one of its

elements has to be negative or positive!


